Friday tidbits

Happy Friday! Hope everyone has their kids registered for the AMC next week. If you haven’t already subscribed to the AMC problem-a-day from the MAA, you should! It’ll keep you sharp :-).

Here are a few nice things seen ’round the web recently:

  • The Scrambler, by Dan Meyer & co. Here, Dan challenges us to analyze a classic carnival ride, and asks us to predict where you end up at the end of the ride. And by Dan & “co”, I mean “comment” folks who have generated lots of fun solutions and applets. Dan made a great interactive version here, too.

  • And finally, this lengthy article “Reflections on mathematics and Democracy” by Lynn Arthur Steen is well worth the time [ht: Gene Chase]. He thoughtfully discusses the need for math education among the citizenship. Is “usefulness” to the democracy the highest goal of secondary math education? Do we aim to create quantitatively literate citizens? Or do we put them on the Calculus track and prepare them for college-level STEM careers? Does teaching “quantitative literacy” even count as Mathematics with a capital M? This is obviously something I’ve been thinking a lot about recently. Here are a few of my favorite excerpts:

Ten years ago I addressed the first question posed to this panel in Mathematics and Democracy—a collection of essays from a variety of professionals both inside and outside mathematics.4 (These essays are available for free downloading on the MAA website.) The chief message of this volume is that the mathematics taught in school bears little relationship to the mathematics needed for active citizenship. That mathematics we called quantitative literacy (QL) to contrast it with traditional school mathematics which, historically, is the mathematics students needed to prepare for calculus.

Mathematics and quantitative literacy are distinct but overlapping domains. Whereas mathematics’ power derives from its generality and abstraction, QL is anchored in specific contexts and real world data. An alternative framing of the challenge for this panel is to ask whether perhaps QL might be a more effective approach to high school mathematics for all.

What we forget, however, is that when NCTM initiated its standards work, most mathematics teachers did not actually believe in the goal of teaching mathematics to all high school students. Whereas now we argue about how much and what kind of mathematics to teach in high school, three decades ago debate centered on who should learn high school mathematics. At that time, the curriculum was designed to efficiently sort students into those who were capable of learning high school mathematics and those who were not. So between grades 7 and 9, somewhere between one-third and one-half of the students were placed in a course called General Math—an enervating, pointless review of arithmetic.

Another decade has passed, and our ambitions are now much higher: a common core for all, with everyone emerging from high school ready for college. In one generation, the political view of high school mathematics has progressed from something only some need (or can) learn to a core subject in which all students can and must become proficient. That’s quite a rapid change in ends, which has been matched by a major change in means. The very idea of a common curriculum enforced with common assessments was all but unthinkable back in the 1980s.

Pictures with equations

Check out this awesome blog post by Richard Clark on the Alpha Blog.


Follow the link to see lots of great pictures made with equations. These pictures are so complicated it makes you wonder, is there any picture we can’t make with equations? My first answer is NO.

Think about vector-based graphics. Vector graphics, for those who’ve never heard the term, are pictures/graphics that are stored as a set of instructions for redrawing the picture rather than as a large array of pixels. You’ve used vector graphics if you have ever used clip-art or used the drawing tools in Microsoft Office, or if you’ve ever used Adobe Illustrator, or Inkscape. The advantages of vector graphics include very small files and infinite loss-less resizeability. How can vector graphics achieve this? Well, like I said, vector graphics are stored as rules not pixels. And by rules, we could just as easily say equations.

So the answer is certainly YES we can make any picture using equations. I think the harder question is can we make any picture using ONE equation? Or one set of parametric equations? Or one implicit equation?

What constraints do we want to impose? Do fractals/iterative/recursive rules count?

I am curious to find out how the creators of these picture-equations came up with them. It seems infeasible to do this by trial and error, given the massive size of these equations.

Oh, and if you haven’t yet seen the Batman Curve, you better go check that out too.


Geogebra has new skills

A new version of Geogebra has been released, in beta. It’s called Geogebra 5.0, and you can see the news about it here. Or, here’s a direct link to launch it right away. Thanks to The Cheap Researcher for the lead on this. As readers of this blog may already know, I love Geogebra!

One of the main highlights is that Geogebra now supports 3D manipulations. Awesome! However, don’t get too excited–it doesn’t let you graph anything except planes. No surfaces. It will do geometric constructions, like spheres and prisms. Using parametric equations and the locus feature, you can coax it into rendering spirals or other space curves. [edit: I figured this was possible, but it actually wasn’t. Not sure why.]

Another highlight, which I find even more exciting, is that Geogebra now has a built in CAS. Here’s a screen shot of me playing around with a few of its features. It also has a ways to go, especially for those who are used to more robust systems like Mathematica/Maple/Derive/TI-89. But this is a great step in the right direction, and 10 points for the open-source camp!

Notice that it can work with polynomials in ways you would expect, it can symbolically integrate and derive (simple things), perform partial fraction decomposition, evaluate limits, and find roots. Here are a few more things it can do. Strangely, it had problems finding the complex roots of a quadratic (easy), but not a cubic (hard). Just take a look at my screen shot. Seeing that it did okay finding the complex roots, I wondered if it could also plot them for me. I started by entering (copying and pasting) the complex zeros as points in Geogebra, which worked. But then I discovered the new ComplexRoot[] function which approximates the roots and plots them on the coordinate plane all at once. Cool! Here’s the screenshot:

The seven complex roots of f(z)=z^7+5z^4-z^2+z-15

As you can see, I asked for the roots of a 7th degree polynomial. Since the polynomial had real coefficients, notice that every zero’s conjugate is also a zero, as we’d expect. And we also expect that at least one solution of an odd-degreed polynomial will be real (notice this one has only one real root, approximately 1.22).

That’s all I’ve discovered so far. I’ll let you know if I come across anything else exciting. Keep in mind that this is beta, so the final release will likely have all the bugs worked out and more features.

Interesting Cube Problem

If the cube has a volume of 64, what is the area of the green parallelogram? (Assume points I and J are midpoints.)

Go ahead, work it out. Then, go here for a more in depth discussion, including a video explanation. Also, see my very simple solution in the comments on that page. (My Precalculus students should especially take note!)

And, welcome, SAT Math Blog, to the internet! Thanks for pointing us to this great problem and creating the nice diagram above.

Very Nice Java Applets

I’m always on the look out for nice java applets (or flash, or javascript, or whatever) that help visualize tough math concepts. The best applets are not merely gimmick, but truly make the mathematics more accessible and invite you to explore, predict, and play with the concepts.

Most recently, my dad pointed me to this website.  At this site, you’ll find well over one hundred very nice applets that show things I haven’t seen around the web before. For instance, play around with your favorite polyhedra in 3d, then let the applet truncate or stellate the polyhedron, all with nice animation. And of course, you’ll want to mess with all the settings on the drop down menus, too! Additionally, you can see a mobius strip, klein bottle, cross cap, or a torus. Also, I was just recently blogging about complex functions. Some of these applets allow you to visualize with animation and color various complex functions. Having just completed a grad class in differential equations, I was also interested in these ODE applets. You may also have fun with fractals, like this one.

There are lots of other nice applet websites out there. As you know, I’m a huge fan of GeoGebra (free, open source, able to be run online without installation, easy to use, powerful). Someday maybe I’ll post more extensively about its merits. In the meantime, you can check it out here.  Many of these applets use GeoGebra. This site has a lot of nice applets too.  And here. This one’s rather elementary, but fun for educators. These are great, too. These are all sites I’ve used in class. Like I said, I think they’re more than just ‘cool’–they really do help elucidate hard-to-understand topics.

Feel free to share other applet sites you like.