# Why I hate the definition of trapezoids (part 3)

Yes it’s true. I’m writing about trapezoids again (having written passionately about them here and here previously). I’ve been taking a break from blogging, as I usually do in the summer. For us, school starts in just two weeks. So I thought I’d come out of my shell and post something…and of course I always have something to say about trapezoids :-).

Let’s start with the following easy test question. Don’t peek. See if you can answer the question without any help.

Which of the following quadrilaterals are trapezoids? Before giving the answer, let me first just remind you about my very strongly held position. I believe that instead of this typical textbook definition (the “exclusive definition” we’ll call it) that reads:

“A quadrilateral with one and only one pair of parallel sides.”

“A quadrilateral with at least one pair of parallel sides.”

So the test question above was easy, right? Quadrilaterals (A) and (C) are trapezoids, I hear you say.

Not so fast!! If you’re using the inclusive definition, then the correct answers are actually (A), (B), (C), (D), and (E). But it gets better: If you were using the the exclusive definition, then NONE of these are trapezoids. In order for (A) and (C) to be trapezoids, under the exclusive definition, you must prove that two sides are parallel AND the two remaining sides are not parallel (and you can’t assume that from the picture…especially for (C)!).

Can you see the absurdity of the exclusive definition now?

I finish by offering the following list of reasons why the inclusive definition is better (can you suggest more reasons?):

1. All other quadrilaterals are defined in the inclusive way, so that quadrilaterals “beneath” them inherit all the properties of their “parents.” A square is a rectangle because a square meets the definition of a rectangle. Likewise, parallelograms, rectangles, rhombuses, and squares should all be special cases of a trapezoid.
2. The area formula for a trapezoid still works, even if the legs are parallel. It’s true! The area formula $A=\frac{1}{2}h(b_1+b_2)$ works fine for a parallelogram, rectangle, rhombus, or square.
3. No other definitions break when you use the inclusive definition. With the exception of the definition that some texts use for an isosceles trapezoid. Those texts define an isosceles trapezoid has having both legs congruent, which would make a parallelogram an isosceles trapezoid. Instead, define an isosceles trapezoid as having base angles congruent, or equivalently, having a line of symmetry.
4. The trapezoidal approximation method in Calculus doesn’t fail when one of the trapezoids is actually a rectangle. But under the exclusive definition, you would have to change its name to the “trapezoidal and/or rectangular approximation method,” or perhaps ban people from doing the trapezoidal method on problems like this one: Approximate $\int_0^4(4x-x^2)dx$ using the trapezoidal method with 5 equal intervals. (Note here that the center trapezoid is actually a rectangle…God forbid!!)
5. When proving that a quadrilateral is a trapezoid, one can stop after proving just two sides are parallel. But with the exclusive definition, in order to prove that a quadrilateral is a trapezoid, you would have to prove two sides are parallel AND the other two sides are not parallel (see the beginning of this post!).

# Math Comic rage

I’ve been enjoying following this youtube channel about math, LaTeX, and juggling. It’s authored by an acquaintance of mine (Joe) that I know from the juggling community, actually. Here’s one Joe posted this week that I particularly liked:

# Trapezoid Problem (take 2)

Am I blundering fool? You decide!

It turns out the trapezoid construction I posted earlier today is trivial. Thanks to Alexander Bogomolny for pointing out my error. The construction is quite easy (and it does not require the height), and I quote Alexander:

No, you do not need the height.

Imagine a trapezoid. Draw a line parallel to a side (not a base) from a vertex not on that side. In principle, there are two such lines. One of these is inside the trapezoid. This line, the other side (the one adjacent to the line) and the difference of the bases form a triangle that could be constructed with straightedge and compass by SSS. Next, extend its base and draw through its apex another base. That’s it.

So I redid my Geogebra Applet and posted it here. It’s not really worth checking out, though, since it’s indistinguishable from my previous applet. (In truth, you can reveal the construction lines and see the slight differences.) But I did it for my own satisfaction, just to get the job done correctly :-). Anyway, three cheers for mathematical elegance, and for Alexander Bogomolny*.

*check out Alexander’s awesome blog & site, a true institution in the online math community!

# Constructing a trapezoid using the side lengths

Lloyd left a comment on a post of mine yesterday, asking:

how do you draw a Irregular quadrilateral trapezoid with fixed dimensions for the two parallel bases and the two legs with no angles given using geometry tools?
top base= 328
bottom base= 223
left leg =220
right leg= 215

How would you answer this question? It’s not trivial. You’ll quickly find that if you do a straight-edge and compass construction, you’ll need the height of the trapezoid.

If we let a, b, c, and d be the side lengths of a trapezoid with a and c as the bases, can we express the height h as $h=\sqrt{b^2-\left(\frac{d^2-b^2-(c-a)^2}{2(c-a)}\right)^2}$

This number is constructable, but would take some work to actually construct it on paper. Perhaps we can return to that particular question later. For now, we can let GeoGebra show us the general idea. I’ve made this applet in which you can change the side lengths and the trapezoid will be constructed. I used the height formula above to calculate the height, and the applet shows this value. Footnote:

Just to hit home my usual point one more time, the figure above is ALWAYS a trapezoid, even when sides b and d just happen to be parallel. Just remember that a parallelogram is a special case of a trapezoid!!

# Why I hate the definition of trapezoids

I should have made this post a long time ago, because it’s a bone of contention I’ve always had with trapezoids. Or…not with trapezoids–I like trapezoids–but a bone of contention I have with the definition of trapezoids. In my humble opinion, it’s a major problem with Geometry as it’s currently taught. Here’s the usual definition of a trapezoid (taken from our school’s Geometry text book, by Holt Rinehart and Winston):

“A quadrilateral with one and only one pair of parallel sides.”

I’ve emphasized the words “one and only one,” which is what I want to comment about in this post. (Here’s another source and another source and another source that say it that way, too.) Sometimes it’s also said, “a quadrilateral with exactly one pair of parallel sides.” I’ve prepared a simple GeoGebra applet and posted it here. It allows you to play with the trapezoid, moving its vertices and edges. As you drag it around, at all times, one pair of sides will be parallel. But wait, it’s not always a trapezoid, is it? According to the Geometry book, there’s one moment, as you’re dragging it around, that it stops being a trapezoid and for that one second is exclusively a parallelogram. Here’s the moment I’m talking about:

That’s right, using the Geometry textbook’s definition of a trapezoid, if both pairs of opposite sides of the quadrilateral happen to be parallel,  it’s not a trapezoid anymore. At this point, the mathematical reader should be crying, “Foul! How did we ever let this happen? This definition of a trapezoid is so inelegant!!” And I couldn’t agree more.

We don’t do this with the definition of any other quadrilateral. Why do it with a trapezoid? If I were to make another little applet that lets you drag around a rectangle, would we say “it’s not a rectangle” at the moment you make the four sides equal? No! That would be absurd.

The definition of a trapezoid, in my opinion (and thankfully in the opinion of some others) should read:

“A quadrilateral with at least one pair of parallel sides.”

And the hierarchical diagram should look like this one, I found online (taken from a mathematically enlightened author):

Here’s a nice paragraph from the wikipedia entry on trapezoid:

There is also some disagreement on the allowed number of parallel sides in a trapezoid. At issue is whether parallelograms, which have two pairs of parallel sides, should be counted as trapezoids. Some authors define a trapezoid as a quadrilateral having exactly one pair of parallel sides, thereby excluding parallelograms. Other authors define a trapezoid as a quadrilateral with at least one pair of parallel sides, making the parallelogram a special type of trapezoid (along with the rhombus, the rectangle and the square). The latter definition is consistent with its uses in higher mathematics such as calculus. The former definition would make such concepts as the trapezoidal approximation to a definite integral be ill-defined.

This site and this site also get it right. So there’s hope for the Geometry community and for teachers everywhere. But please, let’s work hard to eradicate the “exclusive” definition from ALL the textbooks. It’s hideous.

# Geogebra has new skills

A new version of Geogebra has been released, in beta. It’s called Geogebra 5.0, and you can see the news about it here. Or, here’s a direct link to launch it right away. Thanks to The Cheap Researcher for the lead on this. As readers of this blog may already know, I love Geogebra!

One of the main highlights is that Geogebra now supports 3D manipulations. Awesome! However, don’t get too excited–it doesn’t let you graph anything except planes. No surfaces. It will do geometric constructions, like spheres and prisms. Using parametric equations and the locus feature, you can coax it into rendering spirals or other space curves. [edit: I figured this was possible, but it actually wasn’t. Not sure why.]

Another highlight, which I find even more exciting, is that Geogebra now has a built in CAS. Here’s a screen shot of me playing around with a few of its features. It also has a ways to go, especially for those who are used to more robust systems like Mathematica/Maple/Derive/TI-89. But this is a great step in the right direction, and 10 points for the open-source camp! Notice that it can work with polynomials in ways you would expect, it can symbolically integrate and derive (simple things), perform partial fraction decomposition, evaluate limits, and find roots. Here are a few more things it can do. Strangely, it had problems finding the complex roots of a quadratic (easy), but not a cubic (hard). Just take a look at my screen shot. Seeing that it did okay finding the complex roots, I wondered if it could also plot them for me. I started by entering (copying and pasting) the complex zeros as points in Geogebra, which worked. But then I discovered the new ComplexRoot[] function which approximates the roots and plots them on the coordinate plane all at once. Cool! Here’s the screenshot:

As you can see, I asked for the roots of a 7th degree polynomial. Since the polynomial had real coefficients, notice that every zero’s conjugate is also a zero, as we’d expect. And we also expect that at least one solution of an odd-degreed polynomial will be real (notice this one has only one real root, approximately 1.22).

That’s all I’ve discovered so far. I’ll let you know if I come across anything else exciting. Keep in mind that this is beta, so the final release will likely have all the bugs worked out and more features.

# Very Nice Java Applets

I’m always on the look out for nice java applets (or flash, or javascript, or whatever) that help visualize tough math concepts. The best applets are not merely gimmick, but truly make the mathematics more accessible and invite you to explore, predict, and play with the concepts. Most recently, my dad pointed me to this website.  At this site, you’ll find well over one hundred very nice applets that show things I haven’t seen around the web before. For instance, play around with your favorite polyhedra in 3d, then let the applet truncate or stellate the polyhedron, all with nice animation. And of course, you’ll want to mess with all the settings on the drop down menus, too! Additionally, you can see a mobius strip, klein bottle, cross cap, or a torus. Also, I was just recently blogging about complex functions. Some of these applets allow you to visualize with animation and color various complex functions. Having just completed a grad class in differential equations, I was also interested in these ODE applets. You may also have fun with fractals, like this one.

There are lots of other nice applet websites out there. As you know, I’m a huge fan of GeoGebra (free, open source, able to be run online without installation, easy to use, powerful). Someday maybe I’ll post more extensively about its merits. In the meantime, you can check it out here.  Many of these applets use GeoGebra. This site has a lot of nice applets too.  And here. This one’s rather elementary, but fun for educators. These are great, too. These are all sites I’ve used in class. Like I said, I think they’re more than just ‘cool’–they really do help elucidate hard-to-understand topics.

Feel free to share other applet sites you like.

# Functions of a Complex Variable

My precalculus classes just finished a unit on polar coordinates and complex numbers. When I teach about complex numbers,  I mention functions of a complex variable in passing, but we don’t really give it much thought. We do complex arithmetic and that’s all; that is, problems like these:

Evaluate. $\frac{i^5(2-i)}{1+3i}$ $\left(2+2i\sqrt{3}\right)^{10}$ $\sqrt{40.5+40.5i\sqrt{3}}$

In our precalculus class, we also understand how to plot complex numbers. Complex numbers must be plotted on a two-dimensional plane because complex numbers are…well…two dimensional! The real number line has no place for them. For instance, we represent the complex number $w=2-3i$ as the point $(2,-3)$ But we don’t ask questions about complex functions. This is sad! Because functions of a complex variable are fairly accessible.  That is, we want to consider functions like $f(z)=z+1$ $f(z)=z+4i$ $f(z)=3z$ $f(z)=iz$ $f(z)=z^2$

The first thing you’ll notice is that I’ve written these functions in terms of $z$, to indicate that they take complex arguments and (possibly) return complex values. Here’s where the problem comes. Take for instance, $f(x)=x+1$. We’re used to visualizing it this way: Notice we’re wired (because of schooling, perhaps) to understand the $x$ coordinate as being the “input” to the function and the $y$ coordinate as being the “output” from the function. Now, think about $f(z)=z+1$ where $z$ is complex. Do you see the problem? Remember, complex numbers are two-dimensional.  A function $f(z)$ that operates on complex numbers has two-dimensional input and two-dimensional output. For example, take the function $f(z)=z+1$. If we try putting a few complex numbers into the function for $z$, what happens? If $z=-2+4i$, then $f(z)=-1+4i$. Geometrically, what is happening to a complex number on the complex plane when we apply $f(z)$? If you thought “the function translates complex numbers to the right by one unit in the complex plane,” you’re right!

I’ve built another Geogebra applet to help you visualize this kind of function. Make sure you use it with purpose, rather than just dragging things around randomly. Try making predictions about what will happen before revealing the result. Read the directions.

Have fun, and I hope you learn something about complex functions! I’m sure to post more on them someday. There’s a lot more to say.