I’ve been taking a grad course in statistics this semester and so I’ve been thinking about all sorts of real world examples of math, including the classic product-failure example that’s a mainstay of most stat classes.

One of the simplest continuous distributions is the exponential distribution which is a pretty decent way to model product failures. The probability of failure after time is given by

.

I read this great article about product failure and testing in Wired this week. I encourage you to check it out. Read the last page of the article especially, where it talks about how cutting-edge companies are modeling minute variations in materials using an electron microscope and some statistics. Instead of actually testing the product over and over again using a fatigue machine, they can create surprisingly accurate models of the materials using computers. Prior to this, the behavior of materials was somewhat unpredictable.

Of course I was excited to see this figure in the article, which shows the Weibull distribution modeling failures of steel bars in a fatigue machine.

The Weibull distribution, unlike the exponential distribution, takes the age of a product into account. If the parameter is greater than zero, than the rate of product failure increases with time. The probability of failure after time is

.

The first obvious thing to note is that the exponential distribution is just a special case of the Weibull distribution, with . The next thing to say is that this distribution is single-peaked. So how is the above a Weibull distribution? The article says it is, but I think it might be a linear combination of two Weibull distributions, don’t you? Whatever–normalize, and you’ve got yourself a probability distribution.

[pun warning!]

The real question is, if this is TWO Weibulls, would you settle for the lesser of two Weibulls?

Well, not yet at least. Everyone’s flipping the classroom, but is it really worth it? Yes and no, as NCTM president Linda Gojak explains in her column this week. I don’t always highlight her column, but I especially appreciated the nuanced way in which she approached this trendy subject. There’s something more fundamental that we need to aim for: engaging our students in mathematics and problem solving. Whether we flip or not may be immaterial, as Linda points out.

Here are a few excerpts from her article, which you should check out in full here.

To Flip or Not to Flip: That Is NOT the Question!

By NCTM President Linda M. Gojak NCTM Summing Up, October 3, 2012

…

A recent strategy receiving much attention is the “flipped classroom.” Innovative use of technology to enhance student learning makes flipping possible and motivating for students and teachers.

…

I believe that we need to go further. As we consider effective instruction that leads to student learning, we must remind ourselves of the characteristics of mathematically proficient students.

…

Rich mathematical tasks provide students with opportunities to engage deeply in mathematics as opposed to a lesson in which the teacher demonstrates and explains a procedure and the student attempts make sense of the teacher’s thinking. Communication includes good questions from both teacher and students and discussions that develop in students a deep understanding by wrestling with the mathematical ideas.

…

Although the flipped classroom may be promising, the question is not whether to flip, but rather how to apply the elements of effective instruction to teach students both deep conceptual understanding and procedural fluency.

I promise I’ll start blogging again. But as followers of this blog might know, I like to take the summer off–both from teaching and blogging. I never take a break from math, though. Here are some fun things I’ve seen recently. Consider it my own little math carnival :-).

I love this comic, especially as I start my stat grad class this semester @ JHU. After this class, I’ll be half-way done with my masters. It’s a long road! [ht: Tim Chase]

These math dice. Honestly I don’t know what I’d do with them, but you have to admit they’re awesome. [ht: Tim Chase]

These two articles about Khan academy and the other about edX I found very interesting. File all of them under ‘flipping the classroom.’ I’m still working up the strength to do a LITTLE flipping with my classroom. My dad forwarded these links to me. He has special interest in all things related to MIT (like Khan, and like edX) since it’s his alma mater.

I’ll be teaching BC Calculus for the first time this semester and we’re using a new book, so I read that this summer. Not much to say, except that I did actually enjoy reading it.

I also started a fabulous book, Fearless Symmetry by Avner Ash and Robert Gross. I have a bookmark in it half way through. But I already recommend it highly to anyone who has already had some college math courses. I just took a graduate course in Abstract Algebra recently and it has been a great way to tie the ‘big ideas’ in math together with what I just learned. The content is very deep but the tone is conversational and non-threatening. (My dad, who bought me the book, warns me that it gets painfully deep toward the end, however. That’s to be expected though, since the authors attempt to explain Wiles’ proof of Fermat’s Last Theorem!)

I had this paper on a juggling zeta function (!) sent to me by the author, Dr. Dominic Klyve (Central Washington University). I read it, and I pretended to understand all of it. I love the intersection of math and juggling, and I’m always on the look out for new developments in the field.

And most recently, I’ve been having a very active conversation with my math friends about the following problem posted to NCTM’s facebook page:

Feel free to go over to their facebook page and join the conversation. It’s still happening right now. There’s a lot to say about this problem, so I may devote more time to this problem later (and problems like it). At the very least, you should try doing the problem yourself!

I also highly recommend this post from Bon at Math Four on why math course prerequisites are over-rated. It goes along with something we all know: learning math isn’t as ‘linear’ an experience as we make it sometimes seem in our American classrooms.

And of course, if you haven’t yet checked out the 90th Carnival of Mathematics posted over at Walking Randomly (love the name!), you must do so. As usual, it’s a thorough summary of recent quality posts from the math blogging community.

Okay, that’s all for now. Thanks for letting me take a little random walk!

The 87th Carnival of Mathematics has arrived!! Here’s a simple computation for you:

What is the sum of the squares of the first four prime numbers?

That’s right, it’s

Good job. Now, onto the carnival. This is my first carnival, so hopefully I’ll do all these posts justice. We had lots of great submissions, so I encourage you to read through this with a fine-toothed comb. Enjoy!

Rants

Here’s a post (rant) from Andrew Taylor regarding the coverage from the BBC and the Guardian on the Supermoon that occurred in March 2011. NASA reports the moon as being 14% larger and 30% brighter, but Andrew disagrees. Go check out the post, and join the conversation.

Have you ever heard someone abuse the phrase “exponentially better”? I know I have. One incorrect usage occurs when someone makes the claim that something is “exponentially better” based on only two data points. Rebecka Peterson has some words for you here, if you’re the kind of person who says this!

John D. Cook highlights a question you’ve probably heard before: Should you walk or run in the rain? An active discussion is going on in the comments section. It’s been discussed in many other places too, including twice on Mythbusters. (I feel like I read an article in an MAA or NCTM magazine on this topic once, as well. Anyone remember that?)

Murray Bourne submitted this awesome post about modeling fish stocks. Murray says his post is an “attempt to make mathematical modeling a bit less scary than in most textbooks.” I think he achieves his goal in this thorough development of a mathematical model for sustainable fisheries (see the graph above for one of his later examples of a stable solution under lots of interesting constraints). If I taught differential equations, I would absolutely use his examples.

Last week I highlighted this new physics blog, but I wanted to point you there again: Go check out Five Minute Physics! A few more videos have been posted, and also a link to this great video about the physics of a dropping Slinky (see above).

Statistics, Probability, & Combinatorics

Mr. Gregg analyzes European football using the Poisson distribution in his post, The Table Never Lies. I liked how much real world data he brought to the discussion. And I also liked that he admitted when his model worked and when it didn’t–he lets you in on his own mathematical thought process. As you read this post, you too will find yourself thinking out loud with Mr. Gregg.

Card Colm has written this excellent post that will help you wrap your mind around the number of arrangements of cards in a deck. It’s a simple high school-level topic, but he really puts it into perspective:

the number of possible ways to order or permute just the hearts is 13!=6,227,020,800. That’s about what the world population was in 2002. So back then if somebody could have made a list of all possible ways to arrange those 13 cards in a row, there would have been enough people on the planet for everyone to get one such permutation.

I think it’s good to remind ourselves that whenever we shuffle the deck, we can be almost certain that our arrangement has never been created before (since arrangements are possible). Wow!

Alex is looking for “random” numbers by simply asking people. Go contribute your own “random” number here. Can’t wait to see the results!

Quick! Think of an example of a real-world bimodal distribution! Maybe you have a ready example if you teach stat, but here’s a really nice example from Michael Lugo: Book prices. Before you read his post, you should make a guess as to why the book prices he looked at are bimodal (see histogram above).

Philosophy and History of Math

Mike Thayer just attended the NCTM conference in Philadelphia and brings us a thoughtful reaction in his post, The Learning of Mathematics in the 21st Century. Mike wrote this post because he had been left with “an ambivalent feeling” after the conference. He wants to “engage others in mathematics education in discussions about ways to improve what we do outside of the frameworks that are being imposed on us by those outside of our field.” As a secondary educator, I agree with Mike completely and really enjoyed his post. Mike isn’t satisfied with where education is going. In his post, he writes, “We are leaping ahead into the unknown with new educational models, and we never took the time to get the old ones right.”

Edmund Harriss asks Have we ever lost mathematics? He gives a nice recap of foundational crises throughout the history of mathematics, and wonders, ultimately, if we’ve actually lost any mathematics. There’s also a short discussion in the comments section which I recommend to you.

Peter Woit reflects on 25 Years of Topological Quantum Field Theory. Maybe if you have degree in math and physics you might appreciate this post. It went over my head a bit, I’m afraid!

Book Reviews

In this post, Matt reviews a 2012 book release, Who’s #1, by Amy N. Langville and Carl D. Meyer. The book discusses the ranking systems used by popular websites like Amazon or Netflix. His review is thorough and balanced–Matt has good things to say about the book, but also delivers a bit of criticism for their treatment of Arrow’s Impossibility Theorem. Thanks for this contribution, Matt! [edit: Thanks MATT!]

Shecky R reviews of David Berlinski’s 2011 book, One, Two Three…Absolutely Elementary mathematics in his Brief Berlinski Book Blurb. I’m not sure his review is an *endorsement*. It sounds like a book that only a small eclectic crowd will enjoy.

Peter Rowlett also weighs in on the recent news about a German high school boy who has (reportedly) solved an open problem. Many news sources have picked up on this, and I’ve only followed the news from a distance. So I was grateful for Peter’s comments–he questions the validity of the news in his recent post “Has schoolboy genius solved problems that baffled mathematicians for centuries?” His comments in another recent post are perhaps even more important though–Peter encourages us to think of ways we can remind our students that lots of open problems still exist, and “Mathematics is an evolving, alive subject to which you could contribute.”

Jess Hawke IS *Heptagrin Girl*

Here’s a fun-loving post about Heptagrins, and all the crazy craft projects you can do with them. Don’t know what a Heptagrin is? Neither did I. But go check out Jess Hawke’s post and she’ll tell you all about them!

Any Lewis Carroll lovers out there? Julia Collins submitted a post entitled “A Night in Wonderland” about a Lewis Carroll-themed night at the National Museum of Scotland. She writes, “Other people might be interested in the ideas we had and also hearing about what a snark is and why it’s still important.” When you check out this post, you’ll not only learn about snarks but also about creating projective planes with your sewing machine. Cool!

Mike Croucher over at Walking Randomly gives a shout out to the free software Octave, which is a MATLAB replacement. Check out his post, here. MATLAB is ridiculously expensive, and so the world needs an alternative like Octave. He provides links to the Kickstarter campaign–and Mike has backed the project himself. I too believe in Octave. I’ve used it a few times for my grad work and I’ve been very grateful for a free alternative to MATLAB.

The End

Okay, that’s it for the 87th Carnival of Mathematics. Hope you enjoyed all the posts! Sorry it took me a couple days to post it–there was a lot to digest :-).

If you missed the previous carnival (#86), you can find it here. The next carnival (#88) will be hosted by Christian at checkmyworking.com. For a complete listing of all the carnivals, and more information & FAQ about the carnivals, follow this link.

This article about the saddle-shape of Pringles is a joy to read [ht: Prisca Chase]. I’ll give you an excerpt, but I encourage you to read the whole thing. It’s both mathematically stimulating and extremely funny:

My husband is a calculus professor and one who brings food items into the classroom with surprising regularity. No, he doesn’t bring pies on Pi day – though he can recite the string up to a couple dozen digits – but he does bring Pringles. As a teaching aid.

This afternoon when I walked into his study, I nearly tripped over a plastic Safeway bag filled with six red cans of Pringles. “Is it Pringles Day already?” I asked, nudging the bag. Pringles Day is the day Dr. Mathra lectures on the classification of critical points in multivariable calculus, and he uses the saddle-shaped Pringles to illustrate his points.

After class, the students get to eat his illustrations. It’s their favorite day.

Later in the article, the fact that a Pringle can’t be made from a sheet of paper is mentioned. For a normal sheet of paper, this is true. But you can fold paper in such a way as to approximate a hyperbolic parabaloid. I’ve mentioned this before here and here. So go try it!

I feel like I need to post about this too–just to get the word out.

At first I thought it was funny, but now it just makes me angry. I first heard about this paper thanks to my brother, Tim Chase, who shared this news via Retraction Watch. Then today I learned a bit more information by way of Alexander Bogomolny and his blog.

Okay, what’s going on? Authors M. Sivasubramanian and S. Kalimuthu have published this completely nonsensical math paper, and here’s what Retraction Watch had to say:

Have a seat, this one’s a howler.

According to a retraction notice for “Computer application in mathematics,” published in Computers & Mathematics with Applications:

This article has been retracted at the request of the Publisher, as the article contains no scientific content and was accepted because of an administrative error. Apologies are offered to readers of the journal that this was not detected during the submission process.

Go read the whole paper in full text available here. At the very least, this paper has been retracted. That’s good.

But sadly, S. Kalimuthu and his coauthors are responsible for many other terrible papers too (seriously, go check them out!). How does this happen? Can anyone explain it? And why hasn’t he been stopped?

In one paper in particular, he has completely plagiarized Alexander Bogomolny’s site–as one commenter noticed. Check out Alexander’s blog CTK Insights for his coverage.

Suppose two equally weighted cars collide in a head-on collision, each traveling at 50 miles per hour. Do you think that the impact for one car will be more severe on the car and driver than the impact of that car’s hitting a brick wall?

To be fair, we have to assume that neither the cars nor the wall compress at all. If the wall is as soft as a pillow, I’ll take the wall every time.

Marilyn vos Savant’s recent column in Parade Magazine says that hitting an oncoming car in that way is no more severe than hitting a solid wall. They both stop dead, whether the wall or the other car causes it.

Each experiences a momentum change that is the same as if they hit a wall, not twice as much. That’s clear when I think of it now, using the law that momentum = impulse (that is, mass * velocity = force * time) but I’ve been mistaken when I’ve only thought about it casually, thinking it must be a 100 mph impact..

If a bike hits a car head-on, the situation is different, because the “bike-car” combination will continue to move in the direction of the car, so my intuition is correct in that case: The bike driver fares worse than the car driver. Comments at Marilyn vos Savant’s blog say as much.

I used to think that car bumpers that collapse at the slightest impact were poorly made. In fact, if momentum is constant, extending the time of impact will decrease the force, to keep force * time constant.

Give me “cheap” bumpers and a wall made of pillows every time.

I really enjoy reading J. Michael Shaughnessy’s column. He’s the president of the NCTM and always has interesting, timely things to say about math and math education. Here’s an excerpt from this week’s column, where he recounts his recent conversation with Senator Al Franken (D-Minn) as he eagerly shared a proof with President Shaughnessy. Go check it out!

Seen Any Good Proofs Lately? Raising the Social Currency of Mathematics

We all probably have had a friend or acquaintance, or even a perfect stranger, raving about a book she has just read, or a movie he has recently seen, and then saying, “Oh, you must read this book!” or, “You must see that film!” But how many of us have had this kind of experience in a social occasion where the person exclaimed, “Oh, you must see this proof!” So it was indeed refreshing to meet someone who really likes mathematics, as I did several weeks ago, in what might seem like a very unlikely setting—the Hart Senate Office Building in Washington, D.C.

On Wednesday mornings when Congress is in session, Senator Al Franken (D-Minn.) holds a breakfast gathering in his office for his constituents. Visitors to the breakfast consist primarily of people from Minnesota, but I received an invitation from a mathematics teacher who is spending the year working on the senator’s staff. A famous hearty porridge is served up at these breakfasts, and once guests have begun to circulate, Senator Franken drops in and greets everyone. I had been misinformed and thought that the Senator had been a mathematics major in college. When I asked him about this, he said that the rumor was false, but he agreed that his good grades in math had probably helped him get admitted to college.

After breakfast, the visitors were escorted to a terrace area in the hallway outside the office, where the senator spoke for a few minutes about events being debated in Congress and answered questions. Guests then lined up to have their pictures taken with the senator. I was at the end of the line, and as I shook his hand and introduced myself as the president of NCTM, he said, “Let me show you my geometric proof of the Pythagorean theorem!” Senator Franken then proceeded to grab scratch paper and a pen from one of his staffers and plopped down cross-legged on the hallway carpet. As I sat next to him, he began to sketch out his proof. He explained what he was doing, and why it worked, and I paraphrased each move he made so that it was clear to both of us how he was thinking and what he was doing.

We’ve talked about the ‘flipped classroom’ model a couple times on this blog. Here’s a nice example of a teacher doing this in real life. It looks like it’s working for him and his students!

This article by Samuel Arbesman came through today on Wired.com

Are There Fundamental Laws of Cooking?

Cooking is a field that has in recent years seen a shift from the artistic to the scientific. While there are certainly still subjective and somewhat impenetrable qualities to one’s cuisine — de gustibus non est disputandum — there is an increasing rigor in the kitchen. From molecular gastronomy to Modernist Cuisine, there is a rapid growth in the science of cooking.

And mathematics is also becoming part of this. For example, Michael Ruhlman has explored how certain ingredient ratios can allow one to be more creative while cooking. Therefore, it should come as no surprise that we can go further, and even use a bit of network science, when it comes to thinking about food.

Yong-Yeol Ahn and his colleagues, in a recent paper titled Flavor network and the principles of food pairing, explored the components of cooking ingredients in different regional cuisines. In doing so, they were able to rigorously examine a recent claim: the food pairing hypothesis. The food pairing hypothesis is the idea that foods that go best together contain similar molecular components. While this sounds elegant, Ahn and his collaborators set out to determine whether or not this is true.

Using recipes from such websites as Epicurious, the researchers examined more than 50,000 recipes. They combined these recipe data with information about the chemical components in each of the ingredients, in order to create a network map of related ingredients. For example, shrimp and parmesan are connected in the network, because they contain the same flavor compounds, such as 1-penten-3-ol. A large flavor network of different ingredients is [above].

He later gives a reference to George Hart’s “Incompatible Food Triad” problem and the associated website:

An example solution would be three pizza toppings — A, B, and C — such that a pizza with A and B is good, and a pizza with A and C is good, and a pizza with B and C is good, but a pizza with A, B, and C is bad. Or you might find three different spices or other ingredients which do not go together in some recipe yet any pair of them is fine.

Has any of this ever crossed your mind? Me neither.