What does it mean to truly prove something?

Let me point you to the following recent blog post from Prof Keith Devlin, entitled “What is a proof, really?”

After a lifetime in professional mathematics, during which I have read a lot of proofs, created some of my own, assisted others in creating theirs, and reviewed a fair number for research journals, the one thing I am sure of is that the definition of proof you will find in a book on mathematical logic or see on the board in a college level introductory pure mathematics class doesn’t come close to the reality.

For sure, I have never in my life seen a proof that truly fits the standard definition. Nor has anyone else.

The usual maneuver by which mathematicians leverage that formal notion to capture the arguments they, and all their colleagues, regard as proofs is to say a proof is a finite sequence of assertions that could be filled in to become one of those formal structures.

It’s not a bad approach if the goal is to give someone a general idea of what a proof is. The trouble is, no one has ever carried out that filling-in process. It’s purely hypothetical. How then can anyone know that the purported proof in front of them really is a proof?

(more)

Click the link to read the rest of the article. Also read the comments below the article to see what conversation has already been generated.

I won’t be shy in saying that I disagree with Keith Devlin. Maybe I misunderstand the subtle nuance of his argument. Maybe I haven’t done enough advanced mathematics. Please help me understand.

Devlin says that proofs created by the mathematical community (on the blackboard, and in journals) are informal and non-rigorous. I think we all agree with him on this point.

But the main point of his article seems to be that these proofs are non-rigorous and can never be made rigorous. That is, he’s suggesting that there could be holes in the logic of even the most vetted & time-tested proofs. He says that these proofs need to be filled in at a granular level, from first principles. Devlin writes, “no one has ever carried out that filling-in process.”

The trouble is, there is a whole mathematical community devoted to this filling-in process. Many high-level results have been rigorously proven going all the way back to first principles. That’s the entire goal of the metamath project. If you haven’t ever stumbled on this site, it will blow your mind. Click on the previous link, but don’t get too lost. Come back and read the rest of my post!

I’ve reread his blog post multiple times, and the articles he linked to. And I just can’t figure out what he could possibly mean by this. It sounds like Devlin thoroughly understands what the metamath project is all about, and he’s very familiar with proof-checking and mathematical logic. So he definitely isn’t writing his post out of ignorance–he’s a smart guy! Again, I ask, can anyone help me understand?

I know that a statement is only proven true relative to the axioms of the formal system. If you change your axioms, different results arise (like changing Euclid’s Fifth Postulate or removing the Axiom of Choice). And I’ve read enough about Gödel to understand the limits of formal systems. As mathematicians, we choose to make our formal systems consistent at the expense of completeness.

Is Devlin referring to one of these things?

I don’t usually make posts that are so confrontational. My apologies! I didn’t really want to post this to my blog. I would have much rather had this conversation in the comments section of Devlin’s blog. I posted two comments but neither one was approved. I gather that many other comments were censored as well.

Here’s the comment I left on his blog, which still hasn’t shown up. (I also left one small comment saying something similar.)

Prof. Devlin,

You said you got a number of comments like Steven’s. Can you approve those comments for public viewing? (one of those comments was mine!)

I think Steven’s comment has less to do with computer *generated* proofs as it does with computer *checked* proofs, like those produced by the http://us.metamath.org/ community.

There’s a big difference between the proof of the Four Color Theorem, which doesn’t really pass our “elegance” test, and the proof of e^{i\pi}=-1 which can be found here: http://us.metamath.org/mpegif/efipi.html

A proof like the one I just linked to is done by humans, but is so rigorous that it can be *checked* by a computer. For me, it satisfies both my hunger for truth AND my hunger to understand *why* the statement is true.

I don’t understand how the metamath project doesn’t meet your criteria for the filling in process. I’ll quote you again, “The trouble is, no one has ever carried out that filling-in process. It’s purely hypothetical. How then can anyone know that the purported proof in front of them really is a proof?”

What is the metamath project, if not the “filling in” process?

John

If anyone wants to continue this conversation here at my blog, uncensored, please feel free to contribute below :-). Maybe Keith Devlin will even stop by!

Looking back on 299 random walks

This is my 300th post and I’m feeling all nostalgic. Here are some of the popular threads that have appeared on my blog over the last few years. If you’ve missed them, now’s your chance to check them out:

Thanks for randomly walking with me over these last few years (though, some say it’s a “drunken walk” 🙂 ). Either way, I’ll raise a glass to another 300 posts!

Challenge Problems

Want to enrich your Precalculus course with difficult problems? Look no further!

Very-Difficult-Mazes-Coloring-Page-1I teach a high-octane version of Precalculus to students in our magnet program. Our course, like most Precalculus courses, covers a very wide variety of topics. As often as possible, I like to give them more difficult problems that enrich the material from the book. These documents are a work in progress, but feel free to steal them (just email me a copy if you improve them!):

If you want solutions for any of these, shoot me an email.

These aren’t 100% polished by any means, but I’m sharing them anyway! Long live the spirit of sharing :-).

By the way, many of these problems are collected from other sources but I’m too far removed from those sources to properly attribute the problem-creator. My sincere apologies!

Guess who!

In an effort to share more of my resources through this blog, here’s another installment.

This time I’m sharing a little worksheet that I created called Guess Who? It’s a short activity–a warm up, or an exit card–and students should be able to do it in 5 minutes or so. I do this in my Precalculus class at the beginning of the year, but depending on the timing and the context, it could be appropriate in an Algebra 2 or Calculus class as well.

The functions and the questions have a one-to-one correspondence and there is a unique solution to the worksheet.

These 12 functions might seem a bit strange, but they are the “12 basic functions” named by our Precalculus textbook authors.

Here are two additional activities that can go with a discussion of functions and their properties:

  1. I have all the functions printed out on 8.5″x11″ paper and backed with colored paper so they look nice. I get twelve volunteers to go up to the front and hold the functions. Then we can play all sorts of games. We can ask all the functions that have an asymptote to step forward. We can ask all the odd functions to step forward. Which functions are bounded? Which functions are always increasing? Which functions have a range of all real numbers? But we can also play a guessing game: A student in the audience picks a function and writes it down without telling everyone. The other students in the audience ask yes-no questions about their function, like “Is your function continuous for all real numbers?” Each time, functions that don’t qualify step back and only a few functions remain. This is repeated until the chosen function is the only one that remains.
  2. Another fun game idea comes from one of my colleagues. I love this: Have a bunch of “name tags” made up for all your students. The name tags will be one of the 12 basic functions and students will wear these on their backs, without knowing what their function is. They then have to walk around the room and ask other students yes-no questions about the features of their function until they can identify which function they are. I think I’ve played a version of this with celebrities or something. But it’s perfect for the math classroom, too!

Okay, that’s my contribution to the MTBoS for the day :-).

Haloween worksheet for Calculus

Anyone who has been in math classes knows those corny worksheets with a joke on them. When you answer the questions, the solution to the (hilarious) joke is revealed. Did I mention these worksheets are corny? But when you get to Calculus or higher math classes, you get nostalgic for those old pre-algebra worksheets your middle school teacher gave you. I think I speak for all of us when I say this.

Not to fear, here’s a very corny joke worksheet I made just for your Calculus students. Print this on orange paper and hand it out on Halloween. When kids successfully solve the problems and discover the solution, give them candy.

Here is the solution:

Happy Halloween. Enjoy!

 

PS: I normally use my blog to share deep insights about math education or to discuss interesting higher level mathematics. But I was inspired to share more of my day-to-day activities and worksheets because of Rebecka Peterson at Epsilon-Delta. She has shared some great resources, which I’ve stolen in used in my classroom. Thanks, Rebecka!

 

In Defense of Calculus

In the following article, I expand and clarify my arguments that first appeared in this post.

A colleague recently sent me another article (thanks Doug) claiming that Statistics should replace Calculus as the most important math class for high school students.

Which peak to climb? (CCL, click on image for source)

The argument usually goes: Most kids won’t use Calculus. Statistics is more useful.

As you might know already, I disagree that the most important reason for teaching math is because it is useful. I don’t disagree that math is useful. Math is not just useful, but essential for STEM careers. So “usefulness” is certainly one reason for teaching math. But I don’t think it’s the most important reason for teaching math.

The most important reason for teaching math is because it is beautiful and eternal. Math is the single place in school where students can find deductive certainty and eternal truth. Even when human activity ceases, math will persist. When we study math, we tap into something bigger than ourselves. We taste the divine!

We are teaching students to think deductively—like a mathematician would. This is such an important area of knowledge for students to explore. They need to know what it means to prove something. A proof provides a kind of truth that is unattainable in other subjects, even the hard sciences. At best, the scientific method is still just guesses compared to math.

This is the most important thing we pass on to our students. Though some will, most of our students will not directly use the math we teach. This is actually true about every subject in high school. Most students will not remember the details of The Great Gatsby or remember the chemical formula for Ammonium Nitrate. But we do hope they learn the bigger skills: analyzing text and thinking scientifically. In math, the “bigger skills” are the ones I outlined above—proof, logic, reasoning, argumentation, problem solving. They can always look up the formulas.

Math is a subject that stands on its own and it is not the servant of other subjects. If we treat math as simply a subject that serves other subjects by providing useful formulas, we turn math into magic. We don’t need to defend math in this way. It stands on its own!

Calculus = The Mona Lisa

If students can take both Statistics and Calculus, that is ideal. But if I had to choose one, I would pick Calculus. The development of “the Calculus” is one of the great achievements of mankind and it’s a real crime to go through life never having been exposed to it. Can you imagine never having seen The Mona Lisa? Calculus is like the Mona Lisa of mathematics :-).

Random Walks Mural

I’ve been meaning to give the back wall of my classroom a makeover for a while. This summer I finally found some time to tackle the big project. I took down all the decorations and posters. I fixed up the wall and painted it a nice tan color. Then, I let loose the randomness!

and some added, inspirational, text :-)I struggled with what the new mural would be–I’ve thought about it over the last few years. I considered doing some kind of fractal like the Mandelbrot Set. But it should have been obvious, given the name of my blog!! What you see in the picture above is three two-dimensional random walks in green, blue, and red. In the limiting case, one gets Brownian motion:

Brownian motion of a yellow particle in a gas. (CCL)

I honestly didn’t know what it was going to look like until I did it. I generated it as I went, rolling a die to determine the direction I would go each time. I weighted the left and right directions because of the shape of the wall (1,2=right; 3,4=left; 5=up; 6=down). For more details about the process of making it, here’s a documentary-style youtube video that explains all:

Actually, I lied–it doesn’t tell “all.” If you really want to know more of my thought process and some of the math behind what I did, watch the Extended Edition video which has way more mathematical commentary from me. I’ve also posted the time lapse footage of the individual green, blue, and red. Just for fun, here’s an animated random walk with 25,000 iterations:

Wikipedia, Creative Commons License

A two-dimensional random walk with 25,000 iterations. Click the image for an animated version! (CCL)

I think the mural turned out pretty well! It was scary to be permanently marking my walls, not knowing where each path would take me, or how it would end up looking. At first I thought I would only do ONE random walk. However, the first random walk (in blue) went off the ceiling so I stopped. And then I decided to add two more random walks.

In retrospect, it actually makes complete sense. I teach three different courses (Algebra 2, Precalculus, and Calculus) and I’ve always associated with each of theses courses a “class color”–green, blue, and red, respectively. I use the class color to label their bins, to write their objective and homework on the board, and many other things.

The phrase “Where will mathematics take you?” was also a last-minute addition, if you can believe it. There just happened to be a big space between the blue and red random walks and it was begging for attention.

good question!What a good question for our students. The random walks provide an interesting analogy for the classroom. I’d like to say I’m always organized in my teaching. But some of the richest conversations come from a “random walk” into unexpected territory when interesting questions are raised.

Speaking of interesting questions that are raised, here are a few:

  • Can you figure out how many iterations occurred after looking at a “finished” random walk? Or perhaps a better question: What’s the probability that there were more than n iterations if we see m line segments in the random walk?
  • Given probabilities p_1, p_2, p_3, p_4 of going in the four cardinal directions, can we predict how wide and how high the random walk will grow after n iterations? Can we provide confidence intervals? (might be nice to share this info with the mural creator!)
  • After looking at a few random walks, can we detect any bias in a die? How many random walks would want to see in order to confidently claim that a die is biased in favor of “up” or “left”…etc?

Some of the questions are easy, some are hard. If you love this stuff, you might be interested in taking a few courses in Stochastic Processes. Any other questions you can think of?

Where will math take you this coming academic year? Welcome back everyone!

Four ways to compute a probability

I have a guest blog post that appears on the White Group Mathematics blog here. (My first guest post!) Here’s a taste:

One thing I love about math, and particularly combinatorics and probability, is the fact that many methods exist for solving the same problem.

Each method may have its advantages. The advantage might be conceptual (as in “this makes most sense to me”) or the advantage might be computational (as in “this is the fastest way to do it”).

Discussing the merits of different methods is exactly what math class is for!

For example, check out this typical probability question that could appear in a Precalculus course:

The Texas Ranger pitching staff has 5 right-handers and 8 left-handers. If 2 pitchers are selected at random to warm up, what is the probability that at least one of them is a right-hander?

In fact, it’s one I use in my own Precalculus course and it generated a great class discussion. In teaching it this past year, I ended up showing students four ways to do the problem this year! Here they are…

For the epic conclusion of this post, visit White Group Mathematics. 🙂

MAA Distinguished Lecture Series

If you live in the DC area and you like math, you have no excuse! Come to the MAA Distinguished Lecture Series.

These are one-hour talks, complete with refreshments, all for free due to the generous sponsorship of the NSA. The talks are at the Carriage House, at the MAA headquarters near Dupont Circle.

Here are some of the great talks that are on the schedule in the next few months (I’m especially excited to hear Francis Su on May 14th).

I’ve been to many of these lectures and always enjoyed them. Robert Ghrist‘s lecture was out of this world (here’s the recap, but no video, audio, or slides yet) and was so very accessible and entertaining, despite the abstract nature of his expertise–algebraic topology.

And that’s the wonderful thing about all these talks: Even though these are very bright mathematicians, they go out of their way to give lectures that engage a broad audience.

Here’s another great one from William Dunham, who spoke about Newton (Dunham is probably the world’s leading expert on Newton’s letters). Recap here, and a short youtube clip here:

(full  talk also available)

So, if you’re a DC mathophile, stop by sometime. I’ll see you there!

Math on Quora

quora iconI may not have been very active on my blog recently (sorry for the three-month hiatus), but it’s not because I haven’t been actively doing math. And in fact, I’ve also found other outlets to share about math.

Have you used Quora yet?

Quora, at least in principle, is a grown-up version of yahoo answers. It’s like stackoverflow, but more philosophical and less technical. You’ll (usually) find thoughtful questions and thoughtful answers. Like most question-answer sites, you can ‘up-vote’ an answer, so the best answers generally appear at the top of the feed.

The best part about Quora is that it somehow attracts really high quality respondents, including: Ashton Kutcher, Jimmy Wales, Jermey Lin, and even Barack Obama. Many other mayors, famous athletes, CEOs, and the like, seem to darken the halls of Quora. For a list of famous folks on Quora, check out this Quora question (how meta!).

Also contributing quality answers is none other than me. It’s still a new space for me, but I’ve made my foray into Quora in a few small ways. Check out the following questions for which I’ve contributed answers, and give me some up-votes, or start a comment battle with me or something :-).

And here are a few posts where my comments appear: