Pi R Squared

[Another guest blog entry by Dr. Gene Chase.]

You’ve heard the old joke.

Teacher: Pi R Squared.
Student: No, teacher, pie are round. Cornbread are square.

The purpose of this Pi Day note two days early is to explain why \pi is indeed a square.

The customary definition of \pi is the ratio of a circle’s circumference to its diameter. But mathematicians are accustomed to defining things in two different ways, and then showing that the two ways are in fact equivalent. Here’s a first example appropriate for my story.

How do we define the function \exp(z) = e^z for complex numbers z? First we define a^b for integers a > 0 and b. Then we extend it to rationals, and finally, by requiring that the resulting function be continuous, to reals. As it happens, the resulting function is infinitely differentiable. In fact, if we choose a to be e, the \lim_{n\to\infty} (1 + \frac{1}{n})^n \, not only is e^x infinitely differentiable, but it is its own derivative. Can we extend the definition of \exp(z) \, to complex numbers z? Yes, in an infinite number of ways, but if we want the reasonable assumption that it too is infinitely differentiable, then there is only one way to extend \exp(z).

That’s amazing!

The resulting function \exp(z) obeys all the expected laws of exponents. And we can prove that the function when restricted to reals has an inverse for the entire real number line. So define a new function \ln(x) which is the inverse of \exp(x). Then we can prove that \ln(x) obeys all of the laws of logarithms.

Or we could proceed in the reverse order instead. Define \ln(x) = \int_1^x \frac{1}{t} dt . It has an inverse, which we can call \exp(x) , and then we can define a^b as \exp ( b \ln (a)). We can prove that \exp(1) is the above-mentioned limit, and when this new definition of a^b\, is restricted to the appropriate rationals or reals or integers, we have the same function of two variables a and b as above. \ln(x) can also be extended to the complex domain, except the result is no longer a function, or rather it is a function from complex numbers to sets of complex numbers. All the numbers in a given set differ by some integer multiple of

[1] 2 \pi i.

With either definition of \exp(z), Euler’s famous formula can be proven:

[2] \exp(\pi i) + 1 = 0.

But where’s the circle that gives rise to the \pi in [1] and [2]? The answer is easy to see if we establish another formula to which Euler’s name is also attached:

[3] \exp(i z) = \sin (z) + i \cos(z).

Thus complex numbers unify two of the most frequent natural phenomena: exponential growth and periodic motion. In the complex plane, the exponential is a circular function.

That’s amazing!

Here’s a second example appropriate for my story. Define the function on integers \text{factorial (n)} = n! in the usual way. Now ask whether there is a way to extend it to (some of) the complex plane, so that we can take the factorial of a complex number. There is, and as with \exp(z), there is only one way if we require that the resulting function be infinitely differentiable. The resulting function is (almost) called Gamma, written \Gamma. I say almost, because the function that we want has the following property:

[4] \Gamma (z - 1) = z!

Obviously, we’d like to stay away from negative values on the real line, where the meaning of (–5)! is not at all clear. In fact, if we stay in the half-plane where complex numbers have a positive real part, we can define \Gamma by an integral which agrees with the factorial function for positive integer values of z:

[5] \Gamma (z) = \int_0^\infty \exp(-t) t^{z - 1} dt .

If we evaluate \Gamma (\frac{1}{2}) we discover that the result is \sqrt{\pi} .

In other words,

[6] \pi = \Gamma(\frac{1}{2})^2 .

Pi are indeed square.

That’s amazing!

I suspect that the \pi arises because there is an exponential function in the definition of \Gamma, but in other problems involving \pi it’s harder to find where the \pi comes from. Euler’s Basel problem is a good case in point. There are many good proofs that

1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + ... = \frac{\pi^2}{6}

One proof uses trigonometric series, so you shouldn’t be surprised that \pi shows up there too.

\pi comes up in probability in Buffon’s needle problem because the needle is free to land with any angle from north.

Can you think of a place where \pi occurs, but you cannot find the circle?

George Lakoff and Rafael Núñez have written a controversial book that bolsters the argument that you won’t find any such examples: Where Mathematics Comes From. But Platonist that I am, I maintain that there might be such places.

When cars collide

[Another guest column from Dr. Gene Chase.]

Suppose two equally weighted cars collide in a head-on collision, each traveling at 50 miles per hour.  Do you think that the impact for one car will be more severe on the car and driver than the impact of that car’s hitting a brick wall?

To be fair, we have to assume that neither the cars nor the wall compress at all.  If the wall is as soft as a pillow, I’ll take the wall every time.

Marilyn vos Savant’s recent column in Parade Magazine says that hitting an oncoming car in that way is no more severe than hitting a solid wall.   They both stop dead, whether the wall or the other car causes it.

Each experiences a momentum change that is the same as if they hit a wall, not twice as much. That’s clear when I think of it now, using the law that momentum = impulse (that is, mass * velocity = force * time) but I’ve been mistaken when I’ve only thought about it casually, thinking it must be a 100 mph impact..

If a bike hits a car head-on, the situation is different, because the “bike-car” combination will continue to move in the direction of the car, so my intuition is correct in that case:  The bike driver fares worse than the car driver.  Comments at Marilyn vos Savant’s blog say as much.

I used to think that car bumpers that collapse at the slightest impact were poorly made.  In fact, if momentum is constant, extending the time of impact will decrease the force, to keep force * time constant.

Give me “cheap” bumpers and a wall made of pillows every time.

Mathematical modeler fails to learn from history

Posted by guest blogger Dr. Gene Chase.

For all of you who love mathematical modeling and love (unintentional) humor, here’s a link for you.

Apparently researcher M. M. Tai invented a method for finding the area under “glucose tolerance and other metabolic curves,” a method which has now come to be called — in American Diabetes Association circles at least — “Tai’s model.”

We of course call it the Trapezoidal Rule. ::sigh:: As historian George Santayana once said, “Those who cannot remember the past are condemned to repeat it.”

[Hat off to Slashdot for breaking the news.]

The Important Theorems Are the Beautiful Ones

Dr. Gene Chase guest blog author here again.

What makes a math theorem important?

The usual answer is that it is either beautiful or useful. If like me you think that being useful is a beautiful thing, then important theorems are the beautiful ones.

But what makes a theorem beautiful? For example, why is the Theorem of Pythagoras widely regarded as beautiful: and a, b, and c are not 0 if and only if a, b, and c are the sides of a right triangle? (OK, break into small groups and discuss this among yourselves! An answer appears at the bottom of this post.)

But the theorem 1223334444 = 1223334443 + 1 is not beautiful, won’t you agree?

If the theorem is geometric, we can appeal to visual beauty. For example, three circles pairwise tangent have a beautiful property that is animated here.

But beautiful theorems do not have to be geometric. Numbers are beautiful. For example, Euclid’s theorem that there are an infinity of primes is beautiful. No one has been able to draw a beautiful picture about that, although people have tried from astronomer and mathematician Eratosthenes in 200 BC to science fiction writer and mathematician Stanislaw Ulam in 1963.

For $15 you can have a mathematical theorem named after you. But I can guarantee that it won’t be beautiful. So if you want a theorem named after you, give Mr. Chase the $15 instead and he’ll find one for you. Don’t use 1223334444 = 1223334443 + 1. I claim that as “Dr. Gene Chase’s theorem.”


Answer to discussion question above: Most folks say that a beautiful theorem has to be “deep,” which is just a metaphor for “having many connections to many other things.” For example, the Theorem of Pythagoras has to do with areas, not squares specifically. The semicircle on the hypotenuse of a right triangle has an area equal to the sum of the areas of the semicircles on the adjacent sides. And so for any three similar figures.

Do you remember the joy that you feel when you first learned that two of your friends are also friends of each other? That’s the joy that a mathematician feels when she discovers that the Theorem of Pythagoras and the Theorem of Euclid are intimate with each other. But I’ll leave that connection to another post.

Math is about surprising connections. Which is to say, it’s about beauty.

200 Countries over 200 Years: Visual Data Analysis

Dr. Gene Chase guest author again.

The video at Joy of Stats shows 200 countries’ health and wealth over 200 years. The augmented reality (AR) presentation makes it interesting even if you’re not a geek like me.

My favorite part of Statistics isn’t numerical. It’s graphical. Visual data analysis is powerful because our eyes coupled with our minds are able to see patterns that no amount of means, modes, medians, and standard deviations can show.

Math vocabulary sometimes makes sense

This is the first guest post from John Chase’s dad, also a math teacher.  Thanks, son, for letting me post to your blog.

Gene Chase:  I was taking a shower today when I figured out why I always confused the words “sequence” and “series.”  2, 3, 4, 5, … is a sequence; 2+3+4+5 is a series.  Until today, I thought that my confusion was because “series” and “sequence” both begin with “s.”  Now I see the real problem!  Teachers would say “sum the following series.”  They should have said “evaluate the following series,” since the series is already a sum.

Comment from John Chase:   In non-mathematical contexts we don’t differentiate between the two. We think of “television series” and a “series” of cars in a line at an intersection. How mathematically sloppy!

Gene Chase:  Yes, usually mathematical language is general language made more precise, not less precise.  For example, if you tell a story elliptically, you leave things out of it; if you tell the story parabolically, you give an analog of the story; if you tell the story hyperbolically, you embellish it.  The corresponding geometric figures have eccentricities which are either between 0 and 1 (ellipse), precisely equal to 1 (parabola), or greater than 1 (hyperbola).

This makes sense when you remember that “elliptic” is Greek for “defective,” “para” is Greek for “along side,” and “hyper” is Greek for “beyond.”